Product Information

D 263 THIN BOROSILICATE GLASS

D 263 is a low alkali borosilicate glass which is produced by melting the purest raw materials. As such, it is very resistant to chemical attack. D 263 with its specific properties and large range of different thicknesses with tight tolerances is exceptionally well suited for a number of applications including: liquid crystal displays, optoelectronics, touch control panels, sensor, electroluminescent displays and solar cells. Due to a special down draw production process, D 263 glass sheets are marked by fire-polished surfaces; this glass type can be used without ground and polished surfaces.

The subsequent properties are based primarily upon the measuring results of the very latest standards and measuring methods. Schott retains the right to change the data in keeping with the latest technical standards. Numerical values stated without tolerance are reference values of an average production quality.

PRODUCT FEATURES

- Large thickness range (30μm....1.1mm)
- · Excellent flatness
- · Easy to cut

mg/dm²

· High luminous transmittance

CHEMICAL DATA

Hydrolytic Resistance (DIN ISO 719)

•	Hydrolytic Resistance	(DIN 100 / 10)	•
	Equivalent of Alkali (Na₂ glass grains in μg/g	O) per gram of	20
•	Acid Resistance	(DIN 12116)	2
	Half Surface Weight Los in mg/dm ²	ss after 6 hours	1.4
•	Alkali Resistance	(DIN ISO 695-A)	2

MECHANICAL PROPERTIES

88

Surface Weight Loss after 3 hours in

• Density (@ 20°C/68°F)	2.51 g/cm ³
Modulus of Elasticity	72.9 kN/mm ²
• Knoop Hardness HK ₁₀₀	590

Poisson's Ratio	0.208
 Stress Optical Coefficient (1.02 · 10⁻¹² m²/N) 	3.4
Torsion Modulus	30.1 kN/mm ²

ELECTRICAL PROPERTIES

Dielectric Constant (@ 1 MHz)	6.7
Dielectric Loss Factor (@ 1 MHz	z) 61 x 10 ⁻⁴
• Electric Volume Resistivity for A	A.C. 50Hz (ρ)
@ 250°C	$1.6 \cdot 10^8 \Omega$ cm
@ 350°C	$3.5 \cdot 10^6 \Omega$ cm

OPTICAL PROPERTIES

 Refractive Indices at 20°C (68°F) 	
$n_e (\lambda = 546 \text{ nm})$	1.5255
$n_{d} (\lambda = 588 \text{ nm})$	1.5231
• Dispersion (n _F - n _C)	96.0 x 10 ⁻⁴
 Abbe Value (v_e) 	55
 Luminous Transmittance (τ_{vD65}) (Glass thickness 1.1mm) 	91.7%

THERMAL PROPERTIES

· Linear Thermal Coefficient of	Expansion α
(20-300°C/68-572°F)	7.2 x 10 ⁻⁶ /°K

Transformation Temperature T_g 557°C/1035°F

 Strain Point (10 	^{14.5} dPa•s)	529°C/984°F
		and the second s

Annealing Point (10¹³ dPa•s) 557°C/1035°F

Softening Point (10^{7.6} dPa•s) 736°C/1357°F

Mean Specific Thermal Capacity c_p
 20-100°C
 0.82 kJ/(kg•°K)

All data are intended to be used as guidelines, unless otherwise stated. Please contact Schott should you have additional technical questions.

Schott Corporation

Technical Glass Division 3 Odell Plaza

Yonkers, NY 10701-1405

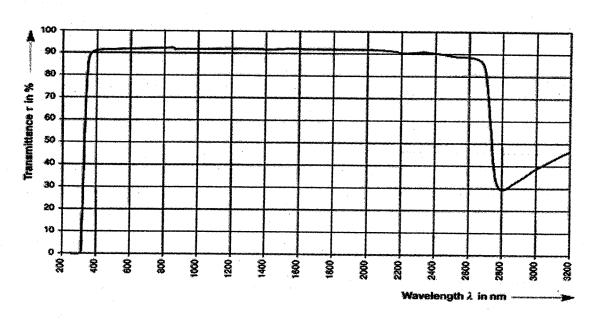
Phone: (914) 968-8900 Fax (914) 968-4422

Web Site: www.schottglass.com

0703 Supersedes All Previous Releases

SHEET SIZES AND TOLERANCES

Nominal thickness	Gross length	Gross width	Net width (quality width)	Parallelism 1)	Squareness 1)
[mm]	[mm]	[mm]	[mm]	[%]	[%]
0.03	440 ± 10	approx. 420	300 +10 / -0	-	•
0.05	440 ± 10		360 +10/-0		_
0.10 – 1.10	440 ± 10		360 +10 / -0	≤ 0.5	≤ 1.0


¹⁾ In % of measured edge length

STANDARD THICKNESS, DEVIATION AND WARP

Nominal thickness 1)	Thickness tolerance	Thickness variation ΔD (deltaD)	Flatness deviation Warp	
	Variation in lot	Within sheet, across draw direction	Referenced to standard size	
[mm]	[mm]	[µm]	[mm]	
0.030	± 0.008	≤ 10	Due to the low stiffness	
0.050	± 0.010	≤ 10	sheet flatness deviation	
0.100	± 0.015	≤ 20	(warp) is not specified.	
0.210	± 0.020	≤ 20	≤ 2.5	
0.250	± 0.020	≤ 20	≤ 2.5	
0.300	± 0.020	≤ 20	≤ 0.6	
0.400	± 0.020	≤ 20	≤ 0.6	
0.500	± 0.050	≤ 25	≤ 0.6	
0.550	± 0.050	≤ 25	≤ 0.6	
0.700	± 0.050	≤ 30	≤ 0.7	
1.100	± 0.050	≤ 40	≤ 0.8	

1) Custom thicknesses may be manufactured upon request.

TRANSMISSION CURVE (1.1 mm)

